
Overall:

Both PUT and POST can be used for creating.

You have to ask "what are you performing the action to?" to distinguish what you should be using. Let's

assume you're designing an API for asking questions. If you want to use POST then you would do that to a

list of questions. If you want to use PUT then you would do that to a particular question.

Great both can be used, so which one should I use in my RESTful design:

You do not need to support both PUT and POST.

Which is used is left up to you. But just remember to use the right one depending on what object you are

referencing in the request.

Some considerations:

 Do you name your URL objects you create explicitly, or let the server decide? If you name them

then use PUT. If you let the server decide then use POST.

 PUT is idempotent, so if you PUT an object twice, it has no effect. This is a nice property, so I

would use PUT when possible.

 You can update or create a resource with PUT with the same object URL

 With POST you can have 2 requests coming in at the same time making modifications to a URL, and

they may update different parts of the object.

An example:

I wrote the following as part of another answer on SO regarding this:

POST:

Used to modify and update a resource

POST /questions/<existing_question> HTTP/1.1

Host: www.example.com/

Note that the following is an error:

POST /questions/<new_question> HTTP/1.1

Host: www.example.com/

If the URL is not yet created, you should not be using POST to create it while specifying the name. This

should result in a 'resource not found' error because <new_question> does not exist yet. You should PUT

the <new_question> resource on the server first.

You could though do something like this to create a resources using POST:

POST /questions HTTP/1.1

Host: www.example.com/

Note that in this case the resource name is not specified, the new objects URL path would be returned to

you.

PUT:

https://stackoverflow.com/questions/256349/what-are-the-best-common-restful-url-verbs-and-actions/256359#256359

Used to create a resource, or overwrite it. While you specify the resources new URL.

For a new resource:

PUT /questions/<new_question> HTTP/1.1

Host: www.example.com/

To overwrite an existing resource:

PUT /questions/<existing_question> HTTP/1.1

Host: www.example.com/

(THE MOST CORRECT ANSWER)

Summary:

Create:

Can be performed with both PUT or POST in the following way:

PUT

Creates THE new resource with newResourceId as the identifier, under the /resources URI, or collection.

PUT /resources/<newResourceId> HTTP/1.1

POST

Creates A new resource under the /resources URI, or collection. Usually the identifier is returned by the

server.

POST /resources HTTP/1.1

Update:

Can only be performed with PUT in the following way:

PUT

Updates the resource with existingResourceId as the identifier, under the /resources URI, or collection.

PUT /resources/<existingResourceId> HTTP/1.1

Explanation:

When dealing with REST and URI as general, you have generic on the left and specific on the right. The

generics are usually called collections and the more specific items can be called resource. Note that a

resource can contain a collection.

Examples:

<-- generic -- specific -->

URI: website.com/users/john

website.com - whole site

users - collection of users

john - item of the collection, or a resource

URI:website.com/users/john/posts/23

website.com - whole site

users - collection of users

john - item of the collection, or a resource

posts - collection of posts from john

23 - post from john with identifier 23, also a resource

When you use POST you are always refering to a collection, so whenever you say:

POST /users HTTP/1.1

you are posting a new user to the users collection.

If you go on and try something like this:

POST /users/john HTTP/1.1

it will work, but semantically you are saying that you want to add a resource to the john collection under the

users collection.

Once you are using PUT you are refering to a resource or single item, possibly inside a collection. So when

you say:

PUT /users/john HTTP/1.1

you are telling to the server update, or create if it doesn't exist, the john resource under the users collection.

Spec:

Let me highlight some important parts of the spec:

POST

The POST method is used to request that the origin server accept the entity enclosed in the request as a new

subordinate of the resource identified by the Request-URI in the Request-Line

Hence, creates a new resource on a collection.

PUT

The PUT method requests that the enclosed entity be stored under the supplied Request-URI. If the

Request-URI refers to an already existing resource, the enclosed entity SHOULD be considered as a

modified version of the one residing on the origin server. If the Request-URI does not point to an existing

resource, and that URI is capable of being defined as a new resource by the requesting user agent, the

origin server can create the resource with that URI."

Hence, create or update based on existence of the resource.

Reference:

 HTTP/1.1 Spec

 Wikipedia - REST

 Uniform Resource Identifiers (URI): Generic Syntax and Semantics

https://tools.ietf.org/html/rfc7231#section-4.3.3
http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.ietf.org/rfc/rfc2396.txt

